본문

서브메뉴

(수학으로 풀어보는) 강화학습 원리와 알고리즘 : 딥러닝과 강화학습을 이해하기 위한 필수 수학 이론부터 다양한 강화학습 알고리즘, 모델 기반 강화학습까지
(수학으로 풀어보는) 강화학습 원리와 알고리즘  : 딥러닝과 강화학습을 이해하기 위한 필수 수...
(수학으로 풀어보는) 강화학습 원리와 알고리즘 : 딥러닝과 강화학습을 이해하기 위한 필수 수학 이론부터 다양한 강화학습 알고리즘, 모델 기반 강화학습까지

상세정보

자료유형  
 단행본
ISBN  
9791158391904
DDC  
006.31-23
청구기호  
006.31 박54ㄱ
저자명  
박성수
서명/저자  
(수학으로 풀어보는) 강화학습 원리와 알고리즘 : 딥러닝과 강화학습을 이해하기 위한 필수 수학 이론부터 다양한 강화학습 알고리즘, 모델 기반 강화학습까지 / 박성수 지음
발행사항  
파주 : 위키북스, 2020
형태사항  
xii, 396 p. : 천연색삽화, 도표 ; 24 cm.
총서명  
데이터 사이언스 시리즈 ; 051
가격  
\28000
Control Number  
gtec:402445
책소개  
코딩하면서 알고리즘이 유도된 과정이 궁금하다면 이 책을 선택하기 바랍니다!

이 책은 딥러닝이나 강화학습 예제를 코딩하면서 그 배경 알고리즘의 유도 과정을 궁금해하는 사람을 위한 책이다. 술술 읽히는 책은 아니지만 그렇다고 심하게 어려운 책도 아니다. 수학의 선수 지식으로 대학 2학년 때 배우는 공업수학을 이수한 정도면 충분하고, 딥러닝의 선수 지식으로는 텐서플로, 케라스, 파이토치를 사용해 MNIST와 같은 간단한 딥러닝 예제를 따라 해 본 정도면 충분하다. 이 책에서는 강화학습뿐만 아니라 다른 머신러닝과 딥러닝의 기초가 되는 확률이론과 추정론에 대한 기본적인 이해를 바탕으로 강화학습의 여러 알고리즘을 처음부터 끝까지 생략하지 않고 수식으로 유도했다. 강화학습이 추구하는 기본 목표로부터 A2C, A3C, PPO, DDPG 및 모델 기반 강화학습 등 강화학습의 알고리즘이 무엇이고 어떤 목적으로 개발됐는지, 어떻게 수학적으로 유도했는지, 그리고 어떻게 코드로 구현해 적용했는지를 구체적으로 설명한다.

★ 이 책에서 다루는 내용 ★
◎ 강화학습을 이해하기 위한 기본 수학: 확률론, 추정론, 최적화, 벡터/행렬의 미분
◎ 강화학습 알고리즘: A2C, A3C, PPO, DDPG
◎ 최적제어 알고리즘: 반복적 LQR, 가우시안 LQR
◎ 로컬 모델 기반 강화학습: GMM, 모델 피팅 방법, LQR을 이용한 강화학습

MARC

 008200331s2020        ggkad        b        001c    kor
■020    ▼a9791158391904
■040    ▼agtec
■0820  ▼a006.31▼223
■090    ▼a006.31▼b박54ㄱ
■1001  ▼a박성수  
■24520▼a(수학으로  풀어보는)  강화학습  원리와  알고리즘  ▼b딥러닝과  강화학습을  이해하기  위한  필수  수학  이론부터  다양한  강화학습  알고리즘,  모델  기반  강화학습까지▼d박성수  지음
■260    ▼a파주▼b위키북스▼c2020
■300    ▼axii,  396  p.▼b천연색삽화,  도표▼c24  cm.
■44000▼a데이터  사이언스  시리즈▼v051
■9500  ▼b\28000

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.
    추천하기

    소장정보

    • 예약
    • 도서대출 신청서비스
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    H061764 006.31 박54ㄱ 종합자료실 대출가능 대출가능
    대출신청 마이폴더

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치