본문

목차정보

[목차정보]
BASIC CONCEPTS
SOLUTIONS
CLASSIFICATION OF FIRST-ORDER DIFFIENTIAL EQUATIONS
SEPARABLE FIRST-ORDER DIFFERENTIAL EQUATIONS
HOMOGENEOUS FIRST-ORDER DIFFERENTIAL EQUATIONS
EXACT FIRST-ORDER DIFFERENTIAL EQUATIONS
INTEGRATING FACTORS
LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS
APPLICATIONS OF FIRST-ORDERDIFFERENTIAL EQUATIONS
LINEAR DIFFERENTIAL EQUATIONS: GENERAL REMARKS
LINEAR DIFFERENTIAL EQUATIONS: THEORYOF SOLUTIONS
SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS WITHCONSTANT COEFFICIENTS
nTH-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS WITHCONSTANT COEFFICIENTS
THE METHOD OF UNDETERMINED COEFFICIENTS
VARIATION OF PARAMENTRS
INITIAL-VALUE PROBLEMS
APPLICATIONS OF SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS
LINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS
POWER-SERIES SOLUTIONS ABOUT AN ORDINARY POINT
REGULAR SINGULAR POINTS AND THE METHOD OF FROBENIUS
GAMMA FUNCTION. BESSEL FUNCTIONS
THE LAPLACE TRANSFORM
PROPERTIES OF THE LAPLACE TRANSFORM
INVERSE LAPLACE TRANSFORMS
CONVOLUTIONS AND THE UNIT STEP FUNCTION
SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS BY LAPLACE TRANSFORMS
SOLUTIONS OF SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS BY LAPLACE TRANSFORMS
MATRICES
eAt
REDUCTION OF LINEAR DIFFERENTIAL EQUATIONS TO A FIRST-ORDER SYSTEM
SOLUTIONS OF LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS
SIMPLE NUMERICAL METHODS
RUNGE-KUTTA METHODS
RPEDICTOR-CORRECTOR METHODS
PREDICTOR-CORRECTOR METHODS
MODIFIED PREDICTOR-CORRECTOR METHODS
NUMERICAL METHODS FOR SYSTEMS
SECOND-ORDER BOUNDARY-VALUE PROBLEMS
STURM-LIOUVILLE PROBLEMS
ELGENFUNCTION EXPANSIONS
THE GAMMA FUNCTION
BESSEL FUNCTIONS
ADDITIONAL LAPLACE TRANSFORMS